Estimator |
Formula^{§}
| Reference |
---|---|---|

Basic Distance (BD) estimators
| ||

Compound of CI, NN & 2NN (BDAV3) |
BDCI = 1/(4 [∑ R_{(1)i}/N]^{2})
| [1] |

BDNN = 1/(2.778 [∑ H_{(1)i}/N]^{2}
| ||

BD 2N = 1/(2.778 [∑ H_{(2)i}/N]^{2}
| ||

BDAV3 = (BDCI + BDNN + BD2N)/3 | ||

Kendall-Moran (KM) estimators
| ||

CI and NN Search areas pooled (KMP) |
KMP = {[∑ (p_{
i
}+ n_{
i
})] - 1}/∑ B_{
i
}
| [5,6] |

CI, NN and 2NN search areas pooled (KM2P) |
KM 2P = {[∑ (p_{
i
}+ n_{
i
}+ m_{
i
})] - 1}/∑ C_{
i
}
| [5] |

Ordered Distance (OD) estimators
| ||

Second Closest Individual (OD2C) |
OD 2C = (2N - 1)/π∑ (R_{(2)i})^{2}
| [7,8] |

Third closest Individual (OD3C) |
OD3C = (3N - 1)/π∑ (R_{(3)i})^{2}
| |

Angle-Order (AO) estimators
| ||

Second closest individual in each quadrant (AO2Q) | $AO2Q=28N/\pi {\displaystyle \sum 1/{R}_{(2)ij}^{2}}$ | [7,8] |

Third closest individual in each quadrant (AO3Q) | $AO3Q=44N/\pi {\displaystyle \sum 1/{R}_{(3)ij}^{2}}$ | [7,8] |

Variable Area Transect (VAT)
| ||

Variable Area Transect |
V AT = (3N - 1)/(w∑ l_{
i
})
| [9] |

Quadrat (QUAD)
| ||

Quadrat |
QUAD = ∑ q_{
i
}/l_{
i
}w_{
i
}N)
| [17] |