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Abstract 

Background: Tropical habitats and their associated environmental characteristics play a critical role in shaping 
macroinvertebrate communities. Assessing patterns of diversity over space and time and investigating the factors 
that control and generate those patterns is critical for conservation efforts. However, these factors are still poorly 
understood in sub-tropical and tropical regions. The present study applied a combination of uni- and multivariate 
techniques to test whether patterns of biodiversity, composition, and structure of macrobenthic assemblages change 
across different lagoon habitats (two mangrove sites; two seagrass meadows with varying levels of vegetation cover; 
and an unvegetated subtidal area) and between seasons and years.

Results: In total, 4771 invertebrates were identified belonging to 272 operational taxonomic units (OTUs). We 
observed that macrobenthic lagoon assemblages are diverse, heterogeneous and that the most evident biological 
pattern was spatial rather than temporal. To investigate whether macrofaunal patterns within the lagoon habitats 
(mangrove, seagrass, unvegetated area) changed through the time, we analysed each habitat separately. The results 
showed high seasonal and inter-annual variability in the macrofaunal patterns. However, the seagrass beds that are 
characterized by variable vegetation cover, through time, showed comparatively higher stability (with the lowest 
values of inter-annual variability and a high number of resident taxa). These results support the theory that seagrass 
habitat complexity promotes diversity and density of macrobenthic assemblages. Despite the structural and func-
tional importance of seagrass beds documented in this study, the results also highlighted the small-scale heterogene-
ity of tropical habitats that may serve as biodiversity repositories.

Conclusions: Comprehensive approaches at the “seascape” level are required for improved ecosystem management 
and to maintain connectivity patterns amongst habitats. This is particularly true along the Saudi Arabian coast of the 
Red Sea, which is currently experiencing rapid coastal development. Also, considering the high temporal variability 
(seasonal and inter-annual) of tropical shallow-water habitats, monitoring and management plans must include tem-
poral scales.
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Background
Coastal lagoons are important transition systems pro-
viding essential socio-economic goods and services (e.g. 
shore protection, fisheries, carbon sequestration) [1–3]. 
Coastal lagoons harbour well-adapted and sometimes 
unique assemblages of species, which play a vital role 
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directly supporting local populations. These ecosystems 
are naturally stressed on daily to annual-time scales [4–8] 
and display high environmental variability (e.g. tempera-
ture, salinity, primary productivity, nutrients, dissolved 
oxygen). Such variability is reflected in the biological 
patterns that alter in response to the new environmental 
conditions. Lagoon ecosystems are also being increas-
ingly affected by human disturbances that can com-
promise their ecological and socio-economic values [5, 
9–12].

Subtropical and tropical coastal lagoons encompass a 
range of essential soft-substrate habitats, such as man-
groves, seagrasses and unvegetated bottoms. These 
habitats are associated with different environmental 
conditions, resulting not only from their location along 
the depth profile but also their structural complex-
ity, and biological assemblages [13–16]. However, while 
these habitats contain a diverse range of organisms spa-
tial distribution patterns and connectivity in subtropical 
and tropical lagoon habitats have mainly been assessed 
using fish and other mobile marine fauna [17–23]. Stud-
ies describing and comparing macrobenthic distribution 
patterns and the strength of connectivity linkages across 
different shallow-water tropical lagoon habitats are par-
ticularly limited compared to temperate systems (e.g. [15, 
24–27]). Spatial differences in the community can pro-
vide information regarding the ecological requirements 
of species. For example, species able to colonize multi-
ple habitats will most likely be less sensitive to environ-
mental changes, whereas those more directly associated 
with a specific habitat may be less tolerant to environ-
mental changes. In general, harsher environmental con-
ditions are observed in the intertidal area, dominated 
by mangrove trees, with conditions being attenuated 
with increasing depth, a pattern that is associated with 
a consistent increase in species richness and abundance 
[28, 29]. Indeed, mangrove habitats are characterized as 
unfavourable environments influenced by high salinity, 
high fluctuation of temperature, desiccation, and poor 
soil condition (depleted oxygen) [30]. On the other hand, 
if undisturbed, seagrass habitats provide comparatively 
more stable environmental conditions through time [31–
33] as well as protection from predators [34].

Furthermore, the knowledge about the role of temporal 
variability in driving macrobenthic patterns is still scarce 
[35–41]. While seasonal changes in tropical regions are 
comparatively less distinct than in temperate regions 
[42], temporal variability in benthic patterns exists [39, 
43, 44]. Investigating temporal variability patterns is 
essential to obtain a deeper knowledge of the dynamics 
and processes regulating lagoon communities. Indeed, 
considering the current scenario of global climate change, 
it is critical to better understand how the distribution 

patterns of organisms in these habitats are changing and 
particularly how they respond to changes in temperature 
and other key environmental drivers [1, 45]. Temporal 
variation patterns in the abundance and composition of 
macrofaunal invertebrates have been intensively studied 
in temperate coastal ecosystems in relation to environ-
mental variables [46–49]. Temporal variability in tem-
perature and food availability, for example, can influence 
recruitment events with consequences for the structure, 
distribution, and abundance of the community [50–52]. 
Similarly, sediment composition, organic matter, and 
vegetation cover, which may vary in time, are also main 
drivers of observed ecological patterns. However, most of 
those studies have been conducted in temperate regions 
and, more recently in polar habitats (e.g. [53–57]). Com-
paratively, less attention has been dedicated to sub-trop-
ical and tropical areas (e.g. [58–61]). This is even more 
striking in regards to the assessment of inter-annual vari-
ability (but see [40, 62, 63]).

Assuming that harsher environmental conditions will 
occur towards the intertidal area (i.e. mangrove habitats), 
we hypothesise (i) a decrease in species richness (i.e. the 
total number of species) and in the number of exclusive 
species from subtidal to intertidal areas, as less resistant 
species are progressively excluded along the the environ-
mental gradient. We also hypothesise that (ii) shallow 
water seagrass meadows will harbour higher numbers of 
species particularly compared with unvegetated bottoms, 
as a result of habitat complexity, protection from preda-
tors and food availability [64–66]. Likewise, we hypoth-
esise (iii) that temporal changes will be less evident in 
subtidal (vegetated and unvegetated) than intertidal habi-
tats [30, 67] and that subtidal seagrasses areas will sup-
port more stable communities through time. Ecologically 
related management decisions require a sound knowl-
edge of the biodiversity of the ecosystem. By assessing 
the variability in spatial and temporal patterns of macro 
benthic organisms we expand on the existing knowledge 
on tropical coastal lagoons which are sensitive as well as 
ecologically and economically valuable.

Results
Macrobenthic community composition: general 
characterization and connectivity among habitats
A total of 4771 invertebrates were identified within 
the different habitats surveyed in the lagoon (Fig.  1a), 
belonging to 272 operational taxonomic units (OTUs) 
distributed among 11 phyla, 16 classes, 40 orders, and 
80 families. Annelida dominated both in abundance and 
number of taxa, contributing to, respectively, 51.0% and 
42.0% of the total values. Sipuncula (15.0%), Arthropoda 
(13.0%), Mollusca (12.0%), and Echinodermata (7.0%) 
also contributed to the overall density. Regarding the 
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number of species, Arthropoda (28.0%) and Mollusca 
(18.0%) were, along with Annelida, the phyla contributing 
the most to the total number of species.

At the species level, the sipunculid Phascolion (Phasco-
lion) strombus strombus (12.2% of the total abundance) 
was the most abundant species, followed by the  poly-
chaetes Simplisetia erythraeensis (5.8%), Eunice indica 

Fig. 1 a Map showing the locations of the habitats in the lagoon. b Annual variability in sea surface temperature in the lagoon during the study 
period. M1 and M2, mangrove; S1 and S2, seagrass; and unvegetated area (Unv.). SU1 and SU2, summer sampling dates 1 and 2; W1 and W2, winter 
sampling dates 1 and 2. The map was produced by the authors using data freely available (http://www.thema ticma pping .org/downl oads/world 
_borde rs.php; https ://www.gadm.org/downl oad_count ry_v3.html, Saudi Arabia)

http://www.thematicmapping.org/downloads/world_borders.php
http://www.thematicmapping.org/downloads/world_borders.php
https://www.gadm.org/download_country_v3.html
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(4.4%), Ceratocephale sp. (3.3%), Aonides sp. (2.7%), Lum-
brineris sp.1 (2.7%), and Lysidice unicornis (2.6%), the 
amphipod Metaprotella africana (3.3%), and the bivalves 
Barbatia foliata5 (2.7%) and Paphies angusta (2.4%). 
Most of these taxa were found in at least four of the stud-
ied sites, except for Metaprotella africana (exclusive to 
S1) and Barbatia foliata, exclusive to seagrass habitats 
(S1 and S2). All the remaining taxa contributed to less 
than 2% of the total abundance.

Only eight taxa (3% the total number of taxa) spanned 
across the five habitats. Most of them were polychaetes 
(Capitellethus sp., Drillonereis sp., Euclymene spp., 
Lumbrineris sp.1, Lysidice unicornis, Notomastus spp.). 
Nemertea (und.) and the sipunculid Phascolion (Phas-
colion) strombus strombus were also observed across 
the five sites. Simplisetia erythraeensis was absent from 
the unvegetated site. There were 62 taxa shared between 
intertidal and subtidal sites, and only 18 exclusive species 
to the mangrove habitats (as a whole), representing 6.6% 
of the of the gamma diversity (2.2%, M2; 4.4%, M1). On 
the other hand, subtidal habitats showed a rather consist-
ent percentage of exclusive species, ranging from 29.4% 
in S1, 32.3% in S2 and 33.8% in the unvegetated area 
(S1: 12.8%; S2: 18.4%; Unvegetated: 15.1% of the gamma 
diversity, i.e. the total number of taxa observed in the 
lagoon).

Both seagrass habitats showed a higher percentage of 
resident species (i.e. species present in over 85% of the 
sampling dates in a certain habitat) compared to man-
grove and unvegetated areas (Table  2). In terms of the 
number of individuals, those taxa contributed to 45.0% 
and 34.0% for S1 and S2, respectively, of the site’s total 
abundance. S2 showed a more balanced distribution of 
the four habitat preference traits analysed  (i.e. resident, 
frequent, occasional, rare) and relatively stable numbers 
throughout the study period (Table  2). Regardless of 
the habitat, occasional species accounted for more than 
12.6% of the total number of species.

Macrobenthic patterns of variability across the lagoon 
seascape show that the community was structured by 
habitat with limited seascape ecological  connectivity 
across the different habitats (Fig. 2a). The environmental 
data gathered partially explained the multivariate vari-
ability of the biological data with the two first axes of the 
distance-based redundancy analysis (dbRDA) explaining 

more than half of the constrained variability but only 
19.1% of the total variability of the biological communi-
ties. The dbRDA plot reinforces a clear separation of the 
communities inhabiting mangrove areas, S1, and the 
unvegetated habitat, whereas S2 presented affinities (i.e. 
higher connectivity) with either S1 or mangrove stations 
depending on the sampling period (Fig.  2b). Samples 
from the unvegetated habitat were associated with depth 
and percentages of medium and fine sand. Seagrass habi-
tats (particularly S1) were separated based on the higher 
silt and clay (fine particles) content, whereas mangrove 
habitats presented a slightly higher percentage of coarse 
sand. Multivariate patterns suggest that the nature of the 
biotope itself drives the composition and structure of 
macrobenthic communities. The investigation of tempo-
ral variability was undertaken for each habitat separately.

Temporal variability within habitats
The high variability patterns in the seagrass biomass 
along the study period (Fig. 3) was reflected in the bio-
logical changes but was not fully aligned with the tem-
poral pattern in sea water temperature (Fig.  1b). When 
analysing the full dataset and regardless the diversity 
metric considered, S2 consistently presented the highest 
number of taxa (155, observed; 184.8–219.7, estimated), 
whereas M2 was the poorest taxa site. Density was also 
higher at S2 (801.9 ind.m−2) and lowest at the unvege-
tated area (388.8 ind.m−2) (Table 1).

In general, a higher number of OTUs were observed in 
the subtidal habitats than the intertidal mangrove areas 
(Fig. 4a), with M2 showing a consistently depressed num-
ber of taxa across all sampling dates. Abundance was 
also generally higher within seagrass meadows (Fig. 4b). 
M2 also presented the lowest Shannon–Wiener diversity 
whereas, in general, higher values were observed at S2 or 
at the unvegetated habitat (Fig. 4c).

Biological similarity within each habitat was mark-
edly low, ranging from 14% (M2) to 25% (S1) (Table  2). 
Both habitats also showed a higher dominance with 
only four and six species contributing to over 62% of 
the habitat’s abundance, respectively. In the remaining 
habitats, a minimum of 13 taxa was needed to reach the 
same level of abundance (Table 2). Except for S1, where 
none of the dominant taxa was a polychaete, this group 
dominated all the other habitats. S1 was dominated by a 

Fig. 2 Multivariate analysis of the community data. a Ordination (non-metric multivariate dimensional analysis) and classification diagram of the 
sampling habitats based on the Bray–Curtis dissimilarity on non-transformed data. b Distance-based redundancy analysis (dbRDA) plot based on 
a set of environmental variables; salinity, temperature, depth, grain size fractions (coarse sand medium sand, fine sand, fines), organic matter: LOI 
(%) and chlorophyll a on biological data from lagoon habitats; M1 and M2, mangrove; S1 and S2, seagrass; and unvegetated area (Unv). The points 
represented the sampling events (winter 1, winter 2, summer 1, and summer 2) for 2014 and 2015. Coarse sand and fines data are square root 
transformed and LOI  loge transformed. Length and direction of vectors indicate the strength and direction of the relationship

(See figure on next page.)
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sipunculid (Phascolion (Phascolion) strombus strombus), 
two bivalves (Barbatia foliata and Cardiolucina sempe-
riana), one amphipod (Metaprotella africana) and two 
echinoderms (Aquilonastra burtoni and Amphioplus 
cyrtacanthus).

Temporal variation in the structure of macrobenthic 
assemblages within each habitat examined on the basis 
of the Bray–Curtis and Jaccard resemblance measures 
indicated different patterns depending on the habitat in 
analysis. Major differences were not detected between 
metrics and therefore only plots for Bray–Curtis matri-
ces are presented (Fig.  5). The results of the Permuta-
tional Multivariate Analysis of Variance (PERMANOVA) 
confirmed different temporal trajectories in the analysed 
habitats (Table  3). Both resemblance metrics applied to 
M1 and S1 datasets showed a significant interaction of 
the main factors (Year x Season). The pair-wise tests indi-
cated for M1 a significant inter-annual difference both 
in winter and summer. For S1, inter-annual differences 
were only detected in winter. With regard to seasonal 
differences, S1 presented significant variability in both 
years (except in the composition–Jaccard-for 2015) but 
in M1 differences were only detected in 2014 (Table  3). 

Macrobenthic communities at M2 and S2 showed signifi-
cant inter-annual variability (except for S2 with presence/
absence) (Table 3). Finally, the unvegetated area showed 
significant and independent seasonal and inter-annual 
variability (Table 3).

Discussion
This study investigated the distribution patterns of mac-
robenthic communities inhabiting adjacent shallow-
water habitats in a tropical coastal lagoon with particular 
focus on how they are connected and how communities 
within each habitat vary over time. Even though ecologi-
cal  seascape connectivity has been previously demon-
strated particularly for fish, information on the benthic 
dynamics in tropical lagoons is still scarce. The Al Qadi-
mah lagoon, likewise other tropical lagoons, encom-
passes a wide range of habitats including both hard (not 
addressed here) and soft-substrates. Within the latter, 
changes in the vegetation cover result in a mosaic of 
habitats with different sedimentary properties that will 
determine the structure of local macrobenthic communi-
ties [68]. Here, we observed a clear zonation of the ben-
thic communities, driven by habitat-related factors acting 

Fig. 3 Biomass of seagrass plants along the study period (2014–2015) in both seagrass stations. SU1 and SU2, summer sampling dates 1 and 2; W1 
and W2, winter sampling dates 1 and 2. S1 and S2, seagrass sites

Table 1 Total number of  Operational Taxonomic Units (OTUs), estimated number of  taxa based on  Chao, Jacknife (1st 
order) and Bootstrap, and average density (ind.m−2) per habitat. M1 and M2, mangrove; S1 and S2, seagrass

Highest value per metric is presented in italic

Habitat No. OTUs Chao Jacknife Bootstrap Av. Density 
(ind.m-2)

M1 65 113.0 ± 23.80 95.0 ± 12.92 78.0 ± 6.94 634.4

M2 38 151.9 ± 79.76 63.3 ± 8.51 48.1 ± 3.81 434.4

S1 119 177.8 ± 21.07 171.5 ± 18.13 142.5 ± 9.68 722.5

S2 155 212.2 ± 18.19 219.7 ± 18.29 184.8 ± 9.36 801.9

Unvegetated 121 156.2 ± 13.81 163.2 ± 14.94 140.9 ± 8.05 388.8
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at varying spatial scales [69]. The present results also pro-
vided new insights into the temporal variability (seasonal 
and inter-annual) of different lagoon shallow-water habi-
tats in a tropical seascape.

Uniqueness of lagoon habitats within the seascape
A clear pattern of habitat-dependent association was 
observed with the different habitats harbouring distinct 
macrobenthic assemblages. The high spatial variability 

Fig. 4 Alpha-diversity metrics per habitat and over time. a Number of Operation Taxonomic Units (OTUs), b density, and c Shannon–Wiener 
diversity. M1 and M2, mangrove; S1 and S2, seagrass; and unvegetated area (Unv)
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of macrofaunal patterns is most likely linked to the het-
erogeneity of the seascape and to the high contribution 
of rare species to the overall abundance. Recent studies 
showed that biological variability is driven by the relative 
high contribution of rare and common species, with rare 
species playing a major role in the temporal patterns, as 
a result of their vulnerability to fluctuations in environ-
mental conditions (e.g. [70, 71]).

Subtidal habitats harboured 70% of the total number 
of species. Overall, seagrass habitats showed the high-
est number of taxa, which agrees with previous stud-
ies [65, 68, 72–74]. Variability was, however, high and 
significant differences within the subtidal area were 
not detected. The structural complexity provided by 
the seagrass canopy and the developed rhizome and 
root systems that contribute to sediment stability may 
favour the development of diverse communities [70, 
75, 76]. In the tropics, the canopy can play an addi-
tional critical role providing shade that can attenu-
ate the effects of sea water temperature [8] that in the 
study region can reach over 32  °C in the summer. Yet, 

Table 2 Cumulative percentage of  the  taxa (Cum  %) 
contributing to  more than  60% of  each habitat’s total 
abundance

Taxa Tax. Group Cum % HPT

M1–Overall similarity 18%

 Ceratocephale sp. POL 8.9 OCCA 

 Phascolion (Phascolion) strombus 
strombus

SIP 16.7 FRE

 Protodorvillea sp. POL 24.6 RARE

 Eunice indica POL 30.5 FRE

 Diogenes costatus DEC 35.3 FRE

 Lysidice unicornis POL 38.8 OCCA 

 Simplisetia erythraeensis POL 42.4 OCCA 

 Aspidosiphon sp. SIP 45.5 RARE

 Syllis hyllebergi POL 48.7 OCCA 

 Marphysa macintoshi POL 51.7 RES

 Scoletoma sp. POL 54.5 OCCA 

 Thalamita poissonii DEC 57.2 OCCA 

 Linopherus sp. POL 59.6 RARE

 Nemertea NEM 62.0 OCCA 

M2-Overall similarity 14%

 Simplisetia erythraeensis POL 32.1 FRE

 Paphies angusta BIV 48.8 RARE

 Ceratocephale sp. POL 58.0 OCCA 

 Paucibranchia adenensis POL 63.1 OCCA 

S1-Overall similarity 25%

 Phascolion (Phascolion) strombus 
strombus

SIP 28.3 RES

 Metaprotella africana AMP 42.1 RARE

 Barbatia foliata BIV 49.6 RES

 Aquilonastra burtoni AST 56.5 RES

 Amphioplus cyrtacanthus OPH 59.9 FRE

 Cardiolucina semperiana BIV 62.2 RES

S2-Overall similarity 19%

 Phascolion (Phascolion) strombus 
strombus

SIP 12.1 RES

 Eunice indica POL 20.0 RES

 Lumbrineris sp1 POL 27.1 RES

 Aonides sp. POL 33.5 OCCA 

 Lysidice unicornis POL 39.1 FRE

 Amphioplus (Lymanella) hastatus OPH 43.7 RES

 Barbatia foliata BIV 46.9 OCCA 

 Paradoneis lyra POL 49.9 OCCA 

 Euclymene spp. POL 52.8 FRE

 Notomastus sp. POL 55.3 FRE

 Cardiolucina semperiana BIV 57.7 FRE

 Pseudosympodomma persicum CUM 59.8 FRE

 Goniada multidentata POL 61.6 RES

Unvegetated-Overall similarity 16%

 Eunice indica POL 5.5 FRE

 Aonides sp. POL 10.0 SEASONAL

 Lumbrineris sp2 POL 13.7 OCCA 

Table 2 (continued)

Taxa Tax. Group Cum % HPT

 Ampelisca brevicornis AMP 17.2 FRE

 Ancilla sp3 GAS 20.3 OCCA 

 Glycinde bonhourei POL 23.3 OCCA 

 Schizaster gibberulus ECH 26.2 FRE

 Diplocirrus sp. POL 28.9 SEASONAL

 Phascolion (Phascolion) strombus 
strombus

SIP 31.7 OCCA 

 Nemertea NEM 34.1 OCCA 

 Amphioplus cyrtacanthus OPH 36.3 RARE

 Leptochela aculeocaudata DEC 38.6 OCCA 

 Lumbrineris sp1 POL 40.8 OCCA 

 Kirkegaardia sp1 POL 42.9 SEASONAL

 Lumbrineris sp3 POL 45.0 RARE

 Paucibranchia adenensis POL 47.1 OCCA 

 Magelona cincta POL 49.0 OCCA 

 Macrophthalmus graeffei DEC 50.8 SEASONAL

 Amphiodia duplicata OPH 52.4 OCCA 

 Antalis rossati SCA 54.0 OCCA 

 Dentalium bisexangulatum SCA 55.6 OCCA 

 Branchiostoma lanceolatum CEPH 57.1 OCCA 

 Chaetozone setosa POL 58.4 OCCA 

 Euclymene spp POL 59.6 OCCA 

 Streblosoma persica POL 60.9 RARE

For each taxa, it is provided the taxonomic group (Tax. Group) and the Habitat 
Preference Trait (HPT). Pol Polychaeta, SIP Sipuncula, BIV Bivalvia, DEC Decapoda, 
NEM Nemertea, AMP Amphipoda, Cum Cumacea, OPH Ophiuroidea, AST 
Asteroidea, CEPH Cephalochordata, ECH Echinoidea, SCA Scaphopoda, GAS 
Gastropoda, RES resident, FRE frequent, OCCA  occasional, SEASONAL and RARE. 
See text for further explanations



Page 9 of 17Alsaffar et al. BMC Ecol           (2020) 20:61  

we found that denser seagrass meadows are not always 
the most favourable habitats for several invertebrates, 
even though this result may be site-dependent [77–80]. 
Indeed, the site displaying the highest variability in 
the cover during the study period, showed the highest 
number of taxa, density of individuals, and exclusive 

number of species (32.3% of the site’s total number of 
species). Dense vegetation can physically obstruct the 
movement of large burrowing macroinvertebrates [68, 
81]. Also, despite the increased aeration within the 
sediment due to the developed root system [82], the 
decomposition of the high amounts of organic matter 

Fig. 5 Non-metric multidimensional scaling (nMDS) based on Bray–Curtis dissimilarity matrices based on untransformed data, for temporal 
variation in the structure of macrobenthic assemblages within each habitat. M1 and M2, mangrove; S1 and S2, seagrass; and unvegetated area (Unv)
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will require increased oxygen consumption and result 
in anoxic regions and accumulation of toxic products 
[83, 84]. Therefore, vegetated areas with comparatlively 
lower cover might harbour higher species numbers as 
a result of species avoiding toxic anoxic conditions in 
densely covered areas [85].

Within mangrove habitats species encounter harsh 
physical environmental conditions (e.g. high salinity, 
hypoxia, desiccation, high concentration of toxins) and 
in general nitrogen limitation (C/N ratio often > 100; 
although mangroves in the Red Sea are carbon limited 
compared to other locations [86]) due to a low nutritional 

Table 3 Two-way PERMANOVA model and  pair-wise tests based on  Bray–Curtis and  Jaccard matrices within  habitats 
among seasons and year (Year and Season interaction; Yr x Se)

M1 and M2, mangrove; S1 and S2, seagrass; and unvegetated area (Unv)

Source Df MS Pseudo-F P(perm) MS Pseudo-F P(perm)

Bray–Curtis Jaccard

M1

 Yr 1 14,075 6.5403 0.001 12,833 4.884 0.001

 Se 1 7999.3 3.7171 0.001 7602.5 2.8934 0.001

 Yr x Se 1 3967.2 1.8434 0.025 4439.2 1.6895 0.012

 Res 12 2152 2627.6

M2

 Yr 1 8802.9 2.4787 0.007 6405 1.6328 0.041

 Se 1 3050.7 0.85902 0.608 4207.3 1.0726 0.36

 Yr x Se 1 3968.6 1.1175 0.362 2779.8 0.70866 0.859

 Res 12 3551.4 3922.6

S1

 Yr 1 6362.4 2.71 0.002 5844.2 1.9678 0.002

 Se 1 3610.6 1.5379 0.086 5086.2 1.7125 0.009

 Yr x Se 1 4735.3 2.0169 0.008 4624.4 1.5571 0.026

 Res 12 2347.8 2970

S2

 Yr 1 5513.2 1.7404 0.038 4583.2 1.3682 0.089

 Se 1 3369.6 1.0637 0.376 4300.4 1.2838 0.149

 Yr x Se 1 3296.2 1.0405 0.36 4002.9 1.195 0.196

 Res 12 3167.9 3349.8

 Unv.

 Yr 1 7397.4 2.7142 0.001 5802.3 1.831 0.003

 Se 1 8791.8 3.2258 0.001 8686.2 2.7411 0.001

 Yr x Se 1 4248.6 1.5589 0.039 4144 1.3077 0.129

 Res 12 2725.5 3168.9

Pair-wise tests

 Term ‘Yr x Se’ for pairs of levels of factor ‘Year’

 Within level ‘Su’ of factor ‘Season’

M1 Groups t P(perm) t P(perm)

2014, 2015 2.2928 0.026 2.0907 0.024

Within level ‘W’ of factor ‘Season’

M1 2014, 2015 1.7421 0.028 1.5051 0.038

S1 2014, 2015 2.0553 0.023 1.5675 0.022

Term ‘Yr x Se’ for pairs of levels of factor ‘Season’

Within level ‘2014′ of factor ‘Year’

M1 Su, W 2.1788 0.03 1.9213 0.029

S1 Su, W 1.2833 0.031 1.4205 0.037

Within level ‘2015’ of factor ‘Year’

S1 Su, W 1.3824 0.029
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value of the main source of organic matter, i.e. leaf litter 
[25]. Under these consitions, populations of a few toler-
ant/opportunistic species dominate the macrobenthic 
communities [25, 87]. In the present study, the deepest 
mangrove area (M2) was dominated by only four species, 
the polychaetes Simplisetia erythraeensis, Ceratocephale 
sp. and Paucibranchia adenensis, and the bivalve Paphies 
angusta contributed to over 60% of the total abundance. 
In the shallowest mangrove area, despite the dominance 
of polychaetes, the sipunculid (Phascolion (Phascolion) 
strombus strombus) and some decapods (Diogenes cos-
tatus and Thalamita poissonii) were also co-dominant. 
Decapods are critical players for the ecosystem function-
ing of these habitats by processing leaf litter and oxy-
genating sediment through their burrows [88, 89] and 
therefore their dominance in the habitat is not surprising. 
As observed elsewhere, mangrove habitats showed the 
lowest number of species compared to nearby seagrass 
and unvegetated substrates, as previously found [90, 91].

Connectedness and stability at the scale of the seascape
In the present study, nearby seagrass meadows differed 
in cover and depth location, which might have resulted 
in limited similarity in faunal communities (both habitats 
shared 35.0% of total number of species). Higher simi-
larities (~ higher seascape connectivity) were detected 
among subtidal habitats than between those and man-
groves (intertidal habitats). Nevertheless, 62 taxa, rep-
resenting 22.8% of the gamma diversity, were shared 
between intertidal and subtidal habitats, suggesting that 
several species may utilize contrasting yet adjacent habi-
tats within the lagoon seascape. Despite the fact that the 
overlap of species across the five habitats is lower (eight 
taxa; 2.9% of the total number of taxa) than previously 
reported [92, 93], the present study suggests the con-
nectivity between intertidal and subtidal areas and the 
need for integrated management measures. The results 
obtained may result from the low hydrodynamic condi-
tions present but information on the hydrographic pat-
terns is non-existent. The effect of tides can result in 
displacement of specimens through water movement [94] 
and depending on their height can also expose organisms 
to desiccation for variable periods of time, which may 
hinder the distribution of most of the species toward the 
intertidal area. Specially, when analysed together, man-
grove habitats contributed to 6.6% (M1, 4.4%; M2, 2.2%) 
of the gamma diversity, contrasting with the unvegetated 
subtidal area and the seagrass meadows that supported, 
respectively, 15.1% and 31.3% (S1, 12.9%; S2, 18.4%).

Mangrove forests can produce relatively large amounts 
of organic matter through the conversion of leaf litter 
into detritus [64], that are later exported to nearby habi-
tats [95–97]. Therefore, the proximity of the mangrove 

stands to shallow water seagrass meadows will most 
likely contribute to the higher biodiversity and, particu-
larly, higher density observed within seagrasses. The pop-
ulations of suspension-feeders, such as Barbatia foliata, 
which was dominant in the seagrass meadow (S1), sup-
ports the idea of higher availability of organic suspended 
particulate matter derived from, among others, nearby 
mangrove canopies and this higher availability will also 
support more resident organisms [68, 99]. Despite the 
high temporal variability observed in all habitats, high-
lighted by the dissimilarity indices, seagrass habitats 
showed a comparatively higher stability, with the low-
est values of inter-annual variability, similar to previous 
studies in temperate areas [8, 98]. These habitats also 
supported the highest number of resident species (i.e. 
those present in over 85% of the sampling periods). At the 
lagoon entrance, the exclusive presence of Schizaster gib-
berulus, a sea urchin previously associated with the near 
shore coastal biotope in the region [16], suggests that the 
unvegetated area may be located along a corridor con-
necting offshore and lagoon communities, with patterns 
likely dependent on the hydrodynamic processes [99]. Its 
position between the lagoon and the open coastal water 
may also explain the high number of species observed 
(121), with a large proportion being exclusively associ-
ated with this habitat (33.9%). It is worth noting that 
given the generally low density observed in the Red Sea 
[16, 100], future studies will require to increase the rep-
lication across multiple spatial scale to fully understand 
the dynamics of benthic macroinvertebrates under low 
nutrient, high temperature, and high salinity conditions. 
Therefore, conclusions related to abundance and diver-
sity should be interpreted with caution.

The present findings reinforce the need for an inte-
grated understanding of shallow-water habitats from a 
seascape perspective, in opposition to a fragmented anal-
ysis of the isolated habitats [21, 101, 102]. Whereas the 
latter may be relevant when looking at particular species, 
the contribution of each habitat to the dynamics of the 
whole macrobenthic assemblages is relevant and should 
not be disregarded by managers when aiming for marine 
biodiversity conservation. Indeed, in tropical regions, 
seagrass beds and mangroves have been reported as key 
nursery areas for several reef fishes such as parrotfishes 
(Labridae, Scarini), grunts (Haemulidae) and snappers 
(Lutjanidae) [103–106] that rely on the macrobenthos 
as food resources. Large-scale migrations (over 30  km) 
by juvenile snappers, between inshore nursery habitats 
and reefs in the central Red Sea have been reported [22]. 
Also, mangrove forests have been linked to enhanced 
biomass and biodiversity of coral reef fishes [18, 21, 104, 
107, 108]. Sustained connectivity of the habitats may 
enhance the resilience of coral populations to recover 
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after disturbance [107]. Therefore, disturbing the corri-
dors connecting coral reefs with other inshore habitats 
may even have consequences for reef conservation at a 
local scale.

Conclusion
Overall, the present study confirmed a decreasing gra-
dient in the total number of species and number of 
exclusive species towards the mangrove habitats. It also 
supports the role of seagrass habitat complexity in pro-
moting diversity and density of organisms. Neverthe-
less, high and stable seagrass cover does not necessarily 
result in the highest biodiversity levels. But the presence 
of these plants plays an essential role in the biodiversity 
of coastal lagoons. Seagrass habitats in contrast to man-
grove forests and the unvegetated area show lower inter-
annual variability and higher number of resident species, 
suggesting more stable communities.

Current findings highlight habitat-structured patterns 
and persistent patchiness evidenced by a limited number 
of overlapping species (dominance of habitat specialists 
over generalists) within the seascape. This is particu-
larly relevant considering the proximity of the analysed 
habitats but may result from the low dominance levels 
compared to temperate regions [92, 98, 109]. Neverthe-
less, 22.8% of the gamma diversity was represented by 
taxa spanning between subtidal and intertidal habitats. 
Hence, holistic, i.e. interconnected seascape management 
approaches, rather than those focusing on single habitats 
should be prioritized to protect biodiversity and fisheries 
[22, 110, 111].

Methods
Study area and sampling design
The present study was carried out in the Al Qadimah 
lagoon (22° 22′ 39.3″ N, 39° 07′ 47.2″ E) located in the 
central region of the Saudi Arabian Red Sea (Fig. 1a). This 
shallow lagoon (average depth 2.19  m) has an approxi-
mate area of 14 km2 and is not impacted by direct anthro-
pogenic disturbances typical of other coastal lagoons 
(e.g. freshwater or sewage discharges, fisheries, habitat 
destruction from coastal development). It is, however, 
situated between two urbanized areas, which are increas-
ing in size (King Abdullah University of Science and 
Technology, 7000 inhabitants; King Abdullah Economic 
City, currently 5000 inhabitants but it is expected to 
reach 50,000 in the near future) but that are not directly 
connected with the lagoon. Hence, it offers a rare oppor-
tunity to study the natural roles of environmental drivers 
in shaping macrobenthic communities inhabiting such 
critical wetlands.

Scattered along the extent of its margins, well-devel-
oped mangrove stands of Avicennia marina are observed. 

The bottom of the lagoon, particularly in the inner areas 
is characterized by more or less fragmented seagrass 
meadows. To depths of approximately 50 cm, Cymodocea 
rotundata is the dominant species with smaller patches 
of Cymodocea serrulata also being present. Below this 
depth, seagrass meadows are mainly characterized by 
mono-specific stands of Enhalus acoroides down to 2 m 
depth. Towards the sea, unvegetated bottoms with either 
sponges mixed with coral rubble or sand progressively 
replace seagrass meadows.

In the Red Sea, there are two marked seasons (Fig. 1b), 
winter (November–April) and summer (May–October). 
In order to investigate inter-annual and seasonal changes 
in macrobenthic patterns, samples were collected in two 
different periods in winter (January; March) and sum-
mer (June; September) of 2014 and 2015. Five perma-
nent soft-sediment habitats typical of tropical coastal 
lagoons were selected: 1. upper mangrove area (M1); 2. 
deeper mangrove area (M2); 3. shallow seagrass meadow 
(S1, mix meadows of Cymodocea serrulata interspaced 
with Cymodocea rotundata; relatively high cover all year 
round); 4. deeper seagrass meadow (S2, monospecific 
stands of Enhalus acoroides with high variability in the 
vegetation cover throughout the study period); and 5. 
unvegetated soft-sediments (Fig.  1a). The unvegetated 
sandy substrate was located between 8 and 10 m depth. 
Due to the widespread distribution of seagrasses, man-
groves and in order to minimize the direct influence of 
those habitats on the colonization patterns of unveg-
etated areas, the site was located at the entrance of the 
lagoon.

Sampling strategy
At each habitat and sampling period, conductivity, tem-
perature, and depth (CTD) casts were carried out with a 
multiparameter probe (OCEAN SEVEN 316 Plus and 305 
Plus). The CTD casts also recorded oxygen saturation in 
the water column. Water samples for the analysis of chlo-
rophyll a (chl a) were collected using a Niskin  bottle at 
each station (2 L per station). Sediment samples were 
collected using a 0.1  m2 Van Veen grab in the seagrass 
meadows and the unvegetated area (subtidal stations), 
whereas in the mangrove habitats (intertidal), samples 
were collected using hand corers (3 × 10  cm i.d. mak-
ing one replicate; total area per replicate ~ 0.024 m2). In 
2014, two replicates at each site and sampling date were 
taken for the study of macrobenthic communities, with 
additional samples being collected for the study of envi-
ronmental variables (grain particle size distributions and 
organic matter content). In 2015, the same approach was 
followed increasing the number of replicates for the study 
of macrobenthic communities to three. Macrobenthic 
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samples were sieved through 1  mm mesh screens and 
preserved in 96% ethanol.

Laboratory analyses
In order to estimate the primary production in the sam-
pling area, the concentration of chl a was quantified by 
fluorescence using the EPA method 445.0 [112]. Water 
samples were filtered using GF/F filters as soon as we 
arrived at the laboratory. The filters were then preserved 
at -80  °C until extraction of the pigments. 10 ml of 90% 
acetone were used for each extract and left for 24  h in 
cold and dark conditions to minimize degradation. The 
procedure was undertaken in low light conditions to 
minimize degradation. A Turner  Trilogy® fluorometer 
(Turner Designs) was used to quantify the chl a content 
using an acidic module. The degradation of the chloro-
phyll a to phaeophytin was accomplished by acidifying 
the sample with 60 µl of 0.1 N HCl.

Sediment samples were sorted after all the vegetation 
associated with sediment was removed. Organisms were 
whenever possible identified to the species level. Vegeta-
tion biomass (seagrass leaves, roots, and mangrove mate-
rial) was quantified per replicate.

Grain particle-size distribution was quantified after ini-
tial wet sieving of the samples (63 μm mesh) to separate 
the silt and clay fraction from sandy fractions and gravel. 
The retained fractions were dried at 80  °C for 24–48  h. 
The dried sandy and gravel sample was then mechani-
cally sieved by using a column of sieves to separate the 
sandy fractions and the gravel as follows: < 63  μm, silt–
clay; 63–125  μm, fine sand; 250-500  μm, medium sand; 
1000–2000 μm, coarse sand;  > 2000 μm, gravel.

The organic content of the sediments was determined 
by loss on ignition (LOI). Sediments were dried for 
24–48 h at 60 °C and then the samples were placed in the 
muffle furnace at 450 °C for 4 h. After cooling in a desic-
cator for 30 min, samples were weighed and the LOI was 
calculated using the following equation [113]:

 where: LOI = Organic Matter content (%),  Wi = Ini-
tial weight of the dried sediment subsample;  Wf = Final 
weight after ignition.

Data analysis
General patterns
Macrobenthic patterns were analysed through a combi-
nation of univariate and multivariate techniques. Sev-
eral univariate metrics were calculated including the 
total number of taxa (S, species richness), density (ind. 
 m−2), and Shannon–Wiener (H′). Considering the dif-
ferent sampling methods, and the dependency of species 

LOI = (Wi −Wf)/Wi × 100

richness on sample size [114], estimates of species diver-
sity were also calculated and compared with S. The non-
parametric species richness estimators used: Chao 1, 
Jacknife 1 order and Bootstrap all follow an asymptotic 
approach to estimate the number of undetected species 
richness. These estimators are commonly used in ecolog-
ical studies because they are simple, intuitive, relatively 
easy to use and perform reasonably well [115]. The biased 
corrected form of Chao 1 estimator [114, 116] uses the 
number of singletons and doubletons to estimate the 
lower bound of species richness. The first order Jacknife 
estimator [117] assumes that the number of species that 
are missed equals the ones that were seen once (single-
tons). The Bootstrap estimator is based on the assump-
tion that if the same data is resampled with replacement 
the number of missing species after resampling will be 
similar to those missed originally [117]. All estimators 
were calculated using the open source software R [118] 
using function “specpool” from “vegan” package [119]. 
Abundance data was used for the calculations of all esti-
mators. In order to have a balanced number of replicates, 
the analyses were conducted for two replicates, with 
those collected in 2015 being randomly selected. Prelimi-
nary analysis showed that the same general patterns in 
composition and alpha-diversity were obtained for 2014 
and 2015 datasets.

To visualize multivariate patterns of abundance in mac-
robenthic communities within the seascape, non-metric 
multidimensional scaling (nMDS) was applied based on 
the Bray–Curtis dissimilarities. Given the differences 
among habitats for some dominant species, when com-
paring habitats (i.e. full dataset), Bray–Curtis dissimi-
larities matrices were calculated using untransformed 
abundance data. Separate nMDS plots were generated 
for each one of the sites for a better visualization of the 
temporal variability. These analyses were also based on 
untransformed data. Within each site, significant varia-
bility in the multivariate patterns over time was analysed 
initially according to a three-factor design (Year; Season; 
Date, nested within Season) using Permutational Multi-
variate Analysis of Variance (PERMANOVA). As the fac-
tor “Date” was found not significant, and to increase the 
power of the analysis, a two-factor PERMANOVA was 
applied. Whenever significant differences in the interac-
tion term were detected (i.e. Year × Season), pair-wise 
tests were conducted.

Connectedness within the seascape and stability patterns 
over time
A preliminary investigation of the patterns of variability 
across the seascape was carried out to identify generalist 
versus specialist taxa, i.e. those that span across multiple 
habitats versus those that are particularly associated with 
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a specific habitat, respectively. We aimed to characterize 
the main differences in the community patterns in terms 
of shared and exclusive species that could determine the 
cause of the connectivity across the lagoon. This analysis 
was conducted based on the whole dataset, disregarding 
the seasonal and annual changes, as our main question 
was related to the constancy of spatial changes in differ-
ent habitats.

Finally, we analysed the frequency of occurrence of 
species in each habitat during the study period. Species 
were classified based on Habitat Preference Trait as fol-
lows: (i) resident, present in over 85% of the sampling 
dates (i.e. eight events); (ii) frequent, observed between 
50% and 85% of the dates; (iii) occasional, presence regis-
tered in between 25% and 50% of the sampling occasions; 
(iv) rare, observed in less than or equal to 25% of the 
sampling dates; (v) seasonal, only observed in one season 
but in both years.

Community stability was also examined over the sam-
pling period within each habitat based on the indices 
Bray–Curtis (community structure) and Jaccard (pres-
ence/absence; composition). Within each habitat, vari-
ability between all pairwise comparisons among terms 
of interest (e.g. within and between seasons; within and 
between years) was analysed. We established that low 
levels of similarity are related to high variability in the 
macrobenthic communities over time, whereas high sim-
ilarity is indicative of more stable communities.

Relationships between environmental variables 
and assemblage structure
Distance-based redundancy analysis (dbRDA) was used 
to assess the relationship between each environmental 
variable and the variation in the community structure 
(given by the direction and length of vectors for each 
variable). The variables used for the analysis were salin-
ity, temperature, depth, grain size fractions, organic mat-
ter content (% LOI), and chl a. Three of the variables 
were transformed to reduce skewness, namely the fines 
and coarse sand fractions of the sediment (square root) 
and organic matter content (natural log). Marginal tests 
are used to show the significance of each variable indi-
vidually to the model and sequential tests show the best 
subset of explanatory variables that explain the biological 
patterns.
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