
Watanabe et al. BMC Ecol           (2020) 20:65  
https://doi.org/10.1186/s12898-020-00331-5

RESEARCH ARTICLE

Identifying the vegetation type in Google 
Earth images using a convolutional neural 
network: a case study for Japanese bamboo 
forests
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Abstract 

Background: Classifying and mapping vegetation are crucial tasks in environmental science and natural resource 
management. However, these tasks are difficult because conventional methods such as field surveys are highly labor-
intensive. Identification of target objects from visual data using computer techniques is one of the most promising 
techniques to reduce the costs and labor for vegetation mapping. Although deep learning and convolutional neural 
networks (CNNs) have become a new solution for image recognition and classification recently, in general, detection 
of ambiguous objects such as vegetation is still difficult. In this study, we investigated the effectiveness of adopting 
the chopped picture method, a recently described protocol for CNNs, and evaluated the efficiency of CNN for plant 
community detection from Google Earth images.

Results: We selected bamboo forests as the target and obtained Google Earth images from three regions in Japan. 
By applying CNN, the best trained model correctly detected over 90% of the targets. Our results showed that the 
identification accuracy of CNN is higher than that of conventional machine learning methods.

Conclusions: Our results demonstrated that CNN and the chopped picture method are potentially powerful tools for 
high-accuracy automated detection and mapping of vegetation.
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Background
Classifying and mapping vegetation are essential tasks 
in environmental science research and natural resource 
management [1]. Conventional methods (e.g., field sur-
veys, manual interpretation of aerial photographs), 
however, are not effective for acquiring vegetation data 
because they are labor-intensive and often economically 
expensive. Remote sensing technology offers a practi-
cal and economical means to acquire information on 

vegetation cover, especially over large areas [2]. Because 
of its ability to perform systematic observations at vari-
ous scales, remote sensing can potentially enable clas-
sification and mapping of vegetation at high temporal 
resolutions.

Detection of discriminating visual features is one of the 
most important steps in almost all computer vision prob-
lems, including in the field of remote sensing. Because 
conventional methods such as support vector machines 
[3] require hand-designed, time-consuming feature 
extraction, substantial efforts have been dedicated toward 
the development of methods for the automatic extraction 
of features. Recently, deep learning has become a new 
solution for image recognition and classification because 
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this new method does not require the manual extraction 
of features.

Deep learning [4, 5] is a type of machine learning tech-
nique that uses algorithms inspired by the structure and 
function of the human brain, called artificial neural net-
works. Deep learning involves the learning of features 
and classifiers simultaneously, and uses training data to 
categorize image content without a priori specification of 
image features. Among all deep learning-based networks, 
the convolutional neural network (CNN) is the most 
popular for learning visual features in computer vision 
applications, including remote sensing. Recent research 
has shown that CNN is effective for diverse applications 
[4–7]. Given its success, CNN has been used intensively 
in several distinct tasks in various academic and indus-
trial fields, including plant science. Recent research has 
shown that the CNN can successfully detect plant dis-
eases and accurately classify plant specimens in an her-
barium [8–10].

CNN is a promising technology in the field of remote 
sensing as well [11, 12]. In recent years, CNNs have 
started to be used for scene tagging and object detec-
tion in remote sensing images. Most previous research 
employed the supervised learning method and sug-
gested that CNNs can accurately detect or classify the 
objects in remote sensing images. However, the number 
of studies that use CNNs for detecting or classifying veg-
etation in remote sensing images is still limited. Li et al. 
[13] successfully detected oil palm trees with an accu-
racy exceeding 96% using CNNs. Recently, Guirado et al. 
[14] used CNNs to detect a wild shrub (Ziziphus lotus) 
that has a wide range of shapes and sizes, from Google 
Earth images. They demonstrated that CNNs can suc-
cessfully detect Ziziphus lotus and provide better results 
than conventional object detection methods. However, 
the detection targets in the existing works are vegetation 
distributed in a patch form; therefore, detection or classi-
fication of vegetation that has ambiguous and amorphous 
shapes, such as clonal plants, is still challenging. Seman-
tic segmentation [15] is a possible solution to address 
this challenge; nevertheless, the application of semantic 
segmentation for vegetation classification is still limited 
because this approach requires enormous amounts of 
labeled data based on pixelwise reference maps [16].

Recently, Ise et  al. [17] developed an alternative 
method (chopped picture method) to conveniently clas-
sify ambiguous and amorphous objects. This method 
dissects the images into numerous small squares and 
efficiently produces the training images. By using this 
method, Ise et  al. [17] correctly classified three moss 
species and “non-moss” objects in test images with an 
accuracy of 95%. However, this method has been applied 
only to high-resolution images, and its applicability to 

low-resolution images, such as remote sensing images, 
has not yet been investigated.

In this study, we investigated the efficiency of adopt-
ing a deep learning model and the chopped picture 
method for computer-based vegetation detection from 
Google Earth images. We used bamboo forests as the 
target for vegetation detection. In recent years, bamboo 
has become invasive in Japan. The bamboo species moso 
(Phyllostachys edulis) and madake (Phyllostachys reticu-
lata) are the two main types of exotic bamboo. Since the 
1970s, the bamboo industry in Japan has declined as a 
result of cheaper bamboo imports and heavy labor costs 
[18]. Consequently, many bamboo plantations were left 
unmanaged, eventually leading to the invasion of adja-
cent native vegetation [19–21].

In this study, we specifically addressed the follow-
ing research questions: (1) how does the resolution of 
images affect the accuracy of detection; (2) how does the 
chopping size of training images affect the accuracy of 
detection; and (3) can a model that was trained for one 
geographical location work well for a different location?

Materials and methods
Target area and image acquisition
In this study, we chose three regions (Sanyo-Onoda, Ide, 
and Isumi) in Japan to perform the analyses (Fig. 1). We 
used Google Earth as the source of imagery. Google Earth 
images have various data sources, ranging from medium-
resolution Landsat images to high-resolution QuickBird 
satellite images. Herein, we used high-resolution Quick-
Bird satellite images (spatial resolution: 0.65  m/pixel). 
From a given sampling location, we obtained the images 
at zoom levels of 1/500 (spatial resolution: ~ 0.13  m/
pixel), 1/1000 (spatial resolution: ~ 0.26  m/pixel), and 
1/2500 (spatial resolution: ~ 0.65 m/pixel). Each study site 
was imaged from Google Earth images during October 
2014 (Sanyo-Onoda), May 2017 (Ide), and January 2017 
(Isumi).

Methods and background concepts for the neural 
networks
In this study, we employed CNNs (Fig.  2), which are a 
special type of feedforward neural networks that consist 
of several convolutional layers and pooling layers.

A feedforward neural network is an artificial neural 
network wherein connections between the nodes do not 
form a cycle. These networks, which perform modeling 
similar to the neuron activity in the brain, are generally 
presented as systems of interconnected processing units 
(artificial neurons) that can compute values from inputs, 
resulting in an output that may be used on further units. 
Artificial neurons are basically processing units that com-
pute some operations over several input variables and 
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usually have one output calculated through the activa-
tion function. Typically, an artificial neuron has a weight 
wi that represents the degree of connection between 

artificial neurons, some input variables xi , and a thresh-
old vector b . Mathematically, the total input and output 
of artificial neurons can be described as follows:

Fig. 1 Target regions of this research. This figure was generated using data Global Map Japan version 2.2 (Geospatial Information Authority of 
Japan)
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Fig. 2 Schematic of the convolutional neural networks
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where u , z , x , w , and brepresent the total input, output, 
input variables, weights, and bias, respectively. f (•) 
denotes an activation function: a nonlinear function such 
as a sigmoid, hyperbolic, or rectified linear function. We 
employed a rectified linear function as the activation 
function, and this function is referred to as the Rectified 
Linear Unit (ReLU). ReLU can be defined as follows:

A CNN consists of a convolutional layer and a pooling 
layer. The convolutional layer plays a role in capturing 
the features from the images. In this process, a fixed-size 
filter runs over the images and extracts the patterns of 
shades of colors in the images. After each convolutional 
layer, there are pooling layers that are created to reduce 
the variance of features; this is accomplished by comput-
ing some operations of a particular feature over a region 
of the image.

The pooling layer has two functions. The first func-
tion is to reduce the position sensitivity of the feature 
that is extracted at the convolution layer so that the out-
put amount of the pooling layer does not change even 
when the position of the feature amount extracted by 
the convolution layer is shifted within the image. The 
second function is to enlarge the receptive field for the 
following convolutional layers. Two operations may be 
realized on the pooling layers, namely, max and aver-
age operations, in which the maximum and mean values 
are selected over the feature region, respectively. This 
process ensures that the same results can be obtained 
even when image features have small translations or 
rotations, and this is crucial for object classification 
and detection. Thus, the pooling layer is responsible 
for sampling the output of the convolutional layer and 
preserving the spatial location of the image, as well as 
selecting the most useful features for the next layers. 
After several convolutional and pooling layers, there 
are fully connected layers, which take all neurons in the 
previous layer and connect them to every single neuron 
in its layer.

Finally, following all the convolution, pooling, and 
fully connected layers, a classifier layer may be used 
to calculate the class probability of each image. We 
employed the softmax function in this layer. The soft-
max function calculates the probabilities of each target 

(1)u =
∑

i

wixi

(2)z = f (u+ b) = f

(

∑

i

wixi + b

)

(3)f (u) = max{0, u} =

{

u(u > 0)
0(u ≤ 0)

class over all possible target classes and is written as 
follows:

where k represents the number of output units and u rep-
resents input variables.

To evaluate the performance of the network, a loss 
function needs to be defined. The loss function evalu-
ates the effectiveness of the network in modeling the 
training dataset. The objective of training is to mini-
mize the error of the loss function. The cross entropy of 
the softmax function is defined as follows:

where t denotes the vector for the training data, K  
represents the possible class, and N  represents the total 
number of instances.

Approach
A schematic of our approach is shown in Fig. 3. We pre-
pared the training data by using the chopped picture 
method [17]. First, in this method, we collected images 
that were (a) nearly 100% covered by bamboo and (b) not 
covered by bamboo. Next, we “chopped” these images into 
small squares with 50% overlap both vertically and hori-
zontally. Finally, we used the chopped images as training 
images. Details about the size and number of training 
images for each study site are presented in Table 1.

We created a model for image classification from a 
CNN for bamboo forest detection. As opposed to the 
conventional approaches for training classifiers with 
hand-designed feature extraction, the CNN learns the 
feature hierarchy from pixels to classifiers and trains 
layers jointly. We used the final layer of the CNN model 
to detect the bamboo coverage from Google Earth 
images. First, we randomly shuffled all images to avoid 
overlapping of the training data and validation data. 
Then, we used 75% of the obtained images as training 
data and the remaining 25% as validation data.

We used the LeNet network [22], which is a classical 
deep learning model, because this study uses small-size 
images as the training and validation data. This net-
work is constructed with two convolutional layers, two 
pooling layers, and a fully connected layer. The network 
architecture is discussed in Table  2. The model param-
eters implemented in this study included the number of 
training epochs (30), learning rate (0.01), train batch size 
(64), and validation batch size (32).

(4)yk = softmaxk(u1,u2, · · · ,uK ) =
euk

∑K
j=1 e

uj
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N
∑
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K
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Evaluation of learning accuracy
The model was validated in each learning epoch by 
using the accuracy and loss functions. “Accuracy” indi-
cates the accuracy of the model in classifying the vali-
dation images, whereas “loss” represents the inaccuracy 
of prediction by the model. If model learning is suc-
cessful, loss (val) is low and accuracy is high. However, 
if loss (val) becomes high during learning, this indicates 
over fitting.

Evaluation of model performance
To evaluate the performance of the model, we used the 
confusion matrix. First, we obtained 20 new images, 
which were uniformly covered by bamboo forest or 
objects other than bamboo forest, from each study site. 
In addition, 20 new images were sampled from multi-
ple locations that were at least 5  km from the locations 
where the training images for each study site were sam-
pled from. Second, we re-sized the images by using the 
chopped picture method without overlap. Third, we ran-
domly sampled 500 images from the re-sized images. 
Fourth, we applied the model to the sampled images and 

evaluated the classification accuracy. Finally, we catego-
rized the classification results into four groups: true posi-
tive (TP), false positive (FP), false negative (FN), and true 
negative (TN). Next, we calculated the classification accu-
racy, recall rate, and precision rate by using the following 
equations:

Influence of image resolution on the classification accuracy
To quantify the influence of image resolution on the 
accuracy of detection, we constructed a model that cor-
respond to image resolution. We obtained images at a 

(6)
Classification accuracy

= (TP + TN )/(TP + TN + FP + FN )

(7)Recall rate = TP/(TP + FN )

(8)Precision rate = TP/(TP + FP)

Fig. 3 Outline of the approach adopted in this research. This figure was generated using data from Google Earth images (Image data: ©2018 CNES/
Airbus & Digital Globe)

Table 1 Size and  number of  training images used in  each 
experiment

Zoom level 1/500 1/1000 1/2500

Chopping size (pix) 28 56 84 28 14

Sanyo-Onoda 67398 16207 6866 16000 16000

Ide 79043 18653 2836 18000 18000

Isumi 64106 15083 2837 15000 15000

Table 2 Architecture of the network used in this study

Layer name Filter size Number 
of output 
neurons

Convolution 1 5 × 5 20

Pooling 1 2 × 2

Convolution 2 5 × 5 50

Pooling 2 2 × 2

Fully connected 1 500

Fully connected 2 2
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zoom level of 1/500 (spatial resolution: ~ 0.13  m/pixel), 
1/1000 (spatial resolution: ~ 0.26  m/pixel), and 1/2500 
(spatial resolution: ~ 0.65  m/pixel) from each study site. 
Next, we applied the chopped picture method. To adjust 
the spatial extent of each chopped image, we chopped 56, 
28, and 14 pixels for the 1/500, 1/1000, and 1/2500 levels, 
respectively. After constructing the model, we applied it 
to the 500 new images and calculated the classification 
accuracy, recall rate, and precision rate.

Influence of chopping grid size on the classification 
accuracy
To quantify the influence of spatial extent of the chopping 
grid on the accuracy of detection, we chopped the 1/500 
resolution images (spatial resolution: ~ 0.13  m/pixel) 
at each study site for three types of pixel sizes (84, 56, 
28). After constructing the model, we applied it to new 
images and calculated the classification accuracy, recall 
rate, and precision rate. Note that our method does not 
perform dense prediction; therefore, the resolution of the 
final image will be lower than that of the original image. 
We considered this to be acceptable for the purpose of 
this study, because a previous study [23] has reported 
that more than 90% of the bamboo forests are distributed 
as patches of size greater than 5000 m2 in Japan.

Transferability test
Given the large variations in the visual appearance of 
bamboo forest across different cities, it is of interest to 
study to what extent a model trained for one geographi-
cal location can be applied to a different geographical 
location. As such, we conducted experiments in which 
we trained a model for one (or more) city and applied it 
to a different set of cities. To test the transferability, we 
used 10 new 1/500 resolution images, and evaluated the 
performance of the model based on the classification 
accuracy, recall rate, and precision rate.

Comparison with existing machine learning method
We compared the classification performance of our 
method with that of support vector machine (SVM), a 
supervised nonparametric classification algorithm. The 
SVM classification algorithm is commonly employed 
in remote sensing for a range of applications [24]. The 
SVM classifier tries to find the optimal hyperplane in 
n-dimensional classification space with the highest mar-
gin between classes.

In this experiment, we provided 56 pixel-chopped 
1/500 resolution images for each study site as training 
images. Then, we applied the model to newly sampled 
500 images and evaluated the classification accuracy, 
recall rate, and precision rate. We used RGB value and 

object-specific texture measures based on grey-level co-
occurrence matrix (GLCM) as an image feature for SVM. 
To calculate the GLCM texture, we first calculated the 
luminance value of the image, which is accomplished by 
defining the weights for R, G, and B. Then, five GLCM 
texture measures of mean, variance, contrast, homoge-
neity, and dissimilarity were calculated. We employed 
RBF kernels for SVM classification and determined the 
parameters (gamma and cost) by a grid search method.

Robustness assessment
We evaluated the classification performance of our 
method using different amounts of training data. In this 
experiment, we provided 15000, 1000, and 100 pixel-
chopped images for each study site as training images. 
Then, we evaluated the classification accuracy, recall rate, 
and precision rate using 500 images that were randomly 
sampled from the images used in model performance 
evaluation.

Results
Fluctuation of accuracy and loss during the learning 
epochs
The accuracy for classifying the validation data of the 
final layer ranged from 94 to 99%, with an average of 
97.52%. The loss values for the validation data ranged 
from 0.008 to 0.214, with an average of 0.086 (Fig. 4). The 
values of accuracy increased and those of loss decreased 
following the learning epochs (Fig. 4). These results sug-
gest that all the models were not overfitted to the datasets 
and successfully learned the features of chopped pictures.

Influence of image resolution on the classification accuracy
The classification accuracy ranged from 74 to 93% 
(Fig.  5a). The recall rate and precision rate for bamboo 
forest ranged 49% to 90% and 94% to 99%, respectively 
(Fig. 5b, d), and those for objects other than bamboo for-
est ranged from 94 to 99% and 66% to 91%, respectively 
(Fig.  5c, e). The classification accuracy and recall rate 
for bamboo forest declined following the decline in the 
image resolution (Fig. 5a, b).

Influence of chopping grid size on the classification 
accuracy
The classification accuracy ranged from 82 to 93% 
(Fig.  6a). The recall rate and precision rate for bamboo 
forest ranged from 72 to 90% and 89% to 99%, respec-
tively (Fig.  6b, d), and those for objects other than 
bamboo forest ranged from 89 to 99% and 75% to 91%, 
respectively (Fig. 6c, e). The intermediate-size images (56 
pixels) exhibited the highest classification accuracy for all 
sites (Fig. 6a).
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Comparison with SVM
Our results show that the CNN classifier outperformed 
the SVM classifier (Fig.  7). The classification accuracy 
of CNN ranged from 86 to 88%, whereas that of SVM 
ranged from 74 to 85% (Fig.  7). The recall rate of CNN 
ranged from 79 to 92%, whereas that of SVM ranged 
from 71 to 91% (Fig.  7). The precision rate of CNN 
ranged from 82 to 97%, and that of SVM ranged from 77 
to 93% (Fig. 7).

Robustness assessment
The classification accuracy of the model trained with 
15000 images ranged from 88.4% to 92.9% (Fig.  8). The 
recall rate and precision rate for bamboo forest ranged 
from 80.4% to 90.4% and 93.9% to 98.8%, respectively 
(Fig. 8). The classification accuracy of the model trained 
with 1000 images ranged from 86 to 88% (Fig.  8). In 
this case, the recall rate and precision rate for bamboo 
forest ranged from 79% to 92.4% and 82.6% to 97.0%, 
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respectively (Fig.  8). The classification accuracy of the 
model trained with 100 images ranged from 76.6% to 
82.4% (Fig.  8), in which case the recall rate and preci-
sion rate for bamboo forest ranged from 71.2% to 88.8% 
and 76.4% to 90.1%, respectively (Fig. 8). Note that even 
when the number of training images was decreased to 
100, a classification accuracy of greater than 75% was 
maintained.

Transferability and classification performance
In general, the performance of the model was poor when 
it was trained with samples from a given city and tested 
with samples from a different city (Fig.  9a). When the 
model trained with the images of Isumi city was applied 
to the other cities, the recall rate was the worst (Fig. 9b). 
Conversely, the model trained with the images of Sanyo 
city had the highest recall rate (Fig. 9b). We noticed that 
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a more diverse set (all) did not yield a better performance 
when applied at different locations, compared with the 
models trained on individual cities (Fig. 9).

Discussion
In this paper, we demonstrated that the chopped picture 
method and CNN could accurately detect bamboo for-
est in Google Earth imagery. Recent studies [13, 14] have 
shown that the use of CNN for processing of color (RGB) 
images of the Earth surface yield high-accuracy results in 

the recognition of different tree species. However, most 
of the existing studies are aimed at identifying tree spe-
cies at the individual tree level and cannot be applied to 
the detection of vegetation with ambiguous and amor-
phous shapes such as clonal plants. In this study, we 
employed the chopped picture method to detect bamboo 
forest from Google Earth images, and our results demon-
strated good performance even though we employed the 
most classical CNN (LeNet). Additionally, our method 
outperformed SVM (Fig. 7), suggesting that the chopped 
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picture method and CNN would be powerful methods 
for high-accuracy image-based bamboo forest detection 
and vegetation mapping (Fig. 10).

Influence of image resolution on the classification accuracy
Our results indicate that the image resolution strongly 
affects the identification accuracy (Fig. 5). As the resolu-
tion rate decreased, the performance of the model also 
declined.

Specifically, in the 1/2500 imagery, the recall rate for 
bamboo forest of Sanyo-Onoda and Isumi city declined 
to 59% and 68%, respectively (Fig.  5b). In contrast, the 
precision rate for bamboo forest increased as the resolu-
tion decreased (Fig. 5d); this result indicates that as the 
resolution decreases, the model overlooks many bam-
boo forests. Thus, when the image resolution is low, 

it is difficult to learn the features of the object, and our 
approach is critically dependent on high-resolution data, 
with even the 0.65 m spatial resolution data being insuf-
ficient for producing the high-quality results. This result 
also suggests that in the deep learning model, misidenti-
fication due to false negatives is more likely to occur than 
misidentification due to false positives as the image reso-
lution decreases.

Influence of chopping grid size on classification accuracy
Our results indicate that the chopping grid size also 
affects the performance of the model. The classifica-
tion accuracy was the highest at the medium pixel size 
(56 × 56 pixels; Fig.  6a). In contrast to the effects of 
image resolution, the recall rate and precision rate for 
bamboo forest was also the highest at medium pixel 
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size, except for the recall rate for Ide city (Fig.  6b, d). 
This result indicates that if the grid size is inappro-
priate, both false positives and false negatives will 
increase.

Increasing the chopping grid size results in an 
increase in the number of chopped pictures, in which 
bamboo and objects other than bamboo are mixed. In 
this study, because we evaluated the performance of the 
model by using images that were uniformly covered by 
bamboo forest or objects other than bamboo forest, the 
influence of imagery consisting of mixed objects on the 
classification accuracy could not be evaluated. We will 
evaluate the classification accuracy for such images in 
our future research.

Transferability among the models
The results of the transferability tests show that trans-
ferability was generally poor, and they suggest that the 
spatial extent of acquisition of the training data strongly 
influences the classification accuracy (Fig. 8). The model 
trained by Sanyo-Onoda city images yielded high recall 
rates for the images acquired at all study sites; however, 
the precision rate was lower than that of the other mod-
els (Fig.  8b, c). This means that the model trained by 
Sanyo-Onoda city images tends to produce false posi-
tive errors. Interestingly, transferability was not found to 
be related to the distance among the study sites (Fig. 8). 
This result indicates that the classification accuracy across 
the model reflects the conditions at the local scale, such 
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as the weather conditions at the time when the image was 
acquired. Additionally, even when we applied a model 
that learned from all training images, the performance of 
the model was not as good as when the training data were 
obtained from the same city. The same tendencies have 

been reported in studies that classified land use by using 
deep learning [25]. This suggests that increasing the quan-
tity of training data could cause a decrease in the identi-
fication accuracy, and it may be difficult to construct an 
identification model that is applicable to a broad area.

80.2

91

55.1

73.5

87

91.8

97.9

61.5

87.3

86.2

72.4

91.8

80.2

91

55.1

73.5

87

91.8

97.9

61.5

87.3

86.2

72.4

91.8

All

Ide

Isu
mi

San
yo

-O
no

da

Ide Isu
mi

San
yo

-O
no

da

Test

Tr
ai

ne
d 

m
od

el
a Accuracy

65.2

88

10.2

47.8

85.6

99.4

98

26.6

79.4

98.6

47

87.4

65.2

88

10.2

47.8

85.6

99.4

98

26.6

79.4

98.6

47

87.4

All

Ide

Isu
mi

San
yo

-O
no

da

Ide Isu
mi

San
yo

-O
no

da

Test
Tr

ai
ne

d 
m

od
el

b Recall rate

93.1

93.6

100

93.6

88.1

86.3

97.8

88.1

94.3

79

95.5

95.8

93.1

93.6

100

93.6

88.1

86.3

97.8

88.1

94.3

79

95.5

95.8

All

Ide

Isu
mi

San
yo

-O
no

da

Ide Isu
mi

San
yo

-O
no

da

Test

Tr
ai

ne
d 

m
od

el

c Precision rate

Fig. 9 Transferability of the models trained for one location, but applied at another



Page 13 of 14Watanabe et al. BMC Ecol           (2020) 20:65  

Conclusion
We demonstrated that the deep learning model pre-
sented herein can detect bamboo forest from Google 
Earth images accurately. Our results suggested that the 
CNN technique and the chopped picture method would 
be powerful tools for high-accuracy image-based veg-
etation mapping, and exhibit great potential for reducing 
the efforts and costs required for vegetation mapping as 
well as improving the current status of monitoring the 
distribution of bamboo. Recently, bamboo expansion has 
become an important problem in Japan because of its 
invasiveness [18]. Although some studies have analyzed 
the bamboo forest distribution probability on a national 
scale [26, 27], monitoring of bamboo expansion is still 
challenging because it is labor-intensive. Nonetheless, 
our method has a certain degree of robustness in reduc-
ing the amount of training data (see Fig.  8). Therefore, 
we conclude that our approach could potentially lead to 
the creation of a semi or even fully automated system for 
monitoring bamboo expansion. Our results also suggest 
that the identification accuracy depends on the image 
resolution and chopping grid size; especially, the spatial 
resolution of training data strongly affects the model 
performance. Although satellite-based remote sensing 
has been widely studied and applied, it still has problems 
such as insufficient information due to low-resolution 

images or inaccurate information due to local weather 
conditions [28]. A possible way to overcome such difficul-
ties is to use higher resolution satellites such as World-
View–4. It is expected that the classification accuracy 
of our approach will be further improved by using even 
deeper neural networks and images obtained by higher 
resolution satellites such as WorldView–4 in the future.
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